UNCLASSIFIED

AD NUMBER

ADB129569

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors; Critical Technol ogy; MAR
1988. Ot her requests shall be referred to Air
Force Armanent Lab., Eglin AFB, FL 32542. This

docunent contains export-controlled technical
dat a.

AUTHORITY

AFSC Itr dtd 13 Feb 1992

THISPAGE ISUNCLASSIFIED

AFATL-TR- 8gn %21:”&01901‘} | - (?y

Common Ada Missile Packages —Phase 2
(CAMP-2)

Volume II. 11th Missile Demonstration

D McNicholl AD-B129 569

C Palmer
J Mason, et al.

McDONNELL DOUGLAS ASTRONAUTICS COMPANY

P O BOX 516 ‘

ST LOUIS, MO 63166 DT‘C
ELECTES

NOVEMBER 1988 DEC 1 21988 .,@.'.

FINAL REPORT FOR PERIOD SEPTEMBER 1985~ MARCH 1988

CRITICAL TECHNOLOGY

Distribution authorized to U.S. Government agencies and their contractors only;

this-roport-decuments-test-and-evalnation disiribution limitation applied March 1988.

Other requests for this document must be referred to the Air Force Armament
Laboratory (FXG) Eglin Air Force Base, Florida 32542 - 5434.

DESTRUCTION NOTICE - For classified documents, follow the procedures

in DoD 5220.22 - M, Industrial Security Manual, Section 11-19 or DoD 5200.1 - R,
Information Security Prcrram Regulation, Chapter IX. For unclassified, limited
documents, destroy by any method that will prevent disclosure of contents or
reconstruction of the document.

AIR FORCE ARMAMENT LABORATORY

Air Force Systems Commandll United States Air Force BEglin Air Force Base, Florida

#g 12 A

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated
or in any way supplied the said drawings, specifications, or other data, is
not to be regarded by implication, or otherwise as in any manner construed,
as licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

AGhn & forme

STEPHEN C. KORN
Chief, Aeromechanics Division

Even though this report may contain special release rights held by
the controlling office, please do not request copies from the Air Force
Armament Laboratory. If you qualify as a recipient, release approval
will be obtained from the originating activity by DTIC. Address your
request for additional copies to:

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

If your address has changed, if you wish to be removed from our mailing
list, or if your organization no longer employs the addressee, please notify
AFATL/FXG, Eglin AFB, FL 32542-5434, to help us maintain a current mailing
Tist.

Do not return copies of this report unless contractual obligations or
notice on a specific document requires that it be returned.

UNCLASSIFIED
TCAT)

il -
Form Approved
REPORT DOCUMENTATION PAGE OMB o 07040188
I ta. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
oaY
UNCLASSIF IED GRITICAL TECHNOL
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Distribution authorized to U.S. Government
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Agencies and their contractors; dhibswnepant,

['«_ PERFORMING ORGANIZATION REPORT NUMBER(S) g MONITORING ORGANIZATION REPORT NUMBER(S)

AFATL-TR-88-62, Volume II

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL [7a. NAME OF MONITORING ORGANIZATION
(If applicable) Aeromechanics Division
McDonnell Douglas

Guidance and Control Branch

< ice any
6c. ADDRESS (City, Stace, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
P.0. Box 516 Air Force Armament Laboratory
St Louis MO 63166 Eglin Air Force Base, Florida 32542-5434
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
STARS Joint Program Office F08635-86-C- 0025
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Room 3D139 (1211 Fern St) PROGRAM PROJECT TASK WORK UNIT
The Pentagon ELEMENT NO. | NO. NO LACCESSION NO.
|__Washington DC 20301-3081 637560 921D GT 02

TV TILE (include Security Classification) Common Ada Missile Packages-Phase 2 (CAMP-2),
Volurie II: 11th Missile Demonstration

12. PERSONAL AUTHOR(S)
D.G. McNicholl, J.F. Mason, C. Palmer, T.T. Taylor, and L.A. Finch

[13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15, PAGE COUNT
Final rrom Sep 85 1o Mar 88 November 1988 128
16. SUPPLEMENTARY NOTATION - -
Availability of this report is specified on verso of front cover. (OVER)
17. COSATI CODES 18, SUBJECT TERMS (Continue on reverse /f n necessary and identity by block number)
FIELD GROUP 5UB-GROUP Reusable Software, Missile Software, Software Generators,

Ada parts, Composition, Systems, Software Parts

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
The CAMP project, primarily funded ty the STARS Joint Program Office, sponsored by the Air

Force Armament Laboratory, and performed by McDonnell Douglas, has taken a pragmatic
approach to demonstrating the feasibility and utility of the concept of software reuse for
real-time embedded missile systems. CAMP products include: 452 operational flight software
parts in Ada for tactical missiles, and a prototype parts engineering system to support
parts identification, cataloging and construction. In order to demonstrate the value of the
reusc concept, a missile subsystem was built using the CAMP parts. Results indicate a
significant increase in software productivity when developing systems using parts, Ada,
rodern software engineering practice, robust software tools, and krowledgeablie suftware
engineers.

This report is documented in three volumes: Volume I - CAMP Parts and Parts Composition
System, Volume II - 11th Missile Demonstration,and Volume III - CAMP Armonics Benchmarks.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
DunclassiFieounumited O3 same As e, [J oric users | UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL
Christine M, Anderson (904) 882-2961 AFATL/FXG
TR
DO Form 1473, JUN B8 Previoos editions rre-qbsolete. LECURTY CopBSCaTiON OF Thib BACE

UNCLASSIFIED

UNCLASSIFIED

3. DISTRIBUTION/AVAILABILITY OF REPORT (CONCLUDED)

distribution limitation applied March 1988.
must be referred to the Air Force Armament Laboratory (FXG), Eglin Air Force

Base, Florida 32542-5434.

16. SUPPLEMENTARY NOTATION (CONCLUDED)

Other requests for this document

TRADEMARKS
The following table lists the trademarks used throughout this document:
TRADEMARK TRADEMARK OF
ACT Advanced Computer Techniques
ART Inference Corporation
ART Studio Inference Corporation
CMS Digital Equipment Corporation
DEC Digital Equipment Corporation
Mikros Mikros, Inc.
Oracle Oracle Corporation
Scribe Scribe Systems
Symbolics Symbeolics, Inc.
Symbotics 3620 Symbolics, Inc.
TLD TLD Systems Lid
VAX Digital Equipment Corporation
VMS Digital Equipment Corporation

"NCLASSIFIED

PREFACE

This report describes the work performed, the results obtained, and the conclusions reached during
the Common Ada Missile Packages Phase-2 (CAMP-2) contract (F08635-86-C-0025). This work was
performed by the Software and Information Systems Department of the McDonnell Douglas Astronautics
Company, St. Louis, Missouri (MDAC-STL), and was sponsored by the United States Air Force Ar-
mament Laboratory (FXG) at Eglin Air Force Base, Florida. This contract was performed between Sep-
tember 1985, and March 1988.

The MDAC-STL CAMP program manager was:

Dr. Daniel G. McNicholl

Technology Branch

Software and Information Systems Department
McDonnell Douglas Astronautics Company
P.O. Box 516

St. Louis, Missouri 63166

The AFATL CAMP program manager was:

Christine M. Anderson

Guidance and Control Branch

Aeromechanics Division

Air Force Armament Laboratory

Eglin Air Force Base, Florida 32542-5434

This report consists of three volumes. Volume I contains information on the development of the

CAMP parts and the Parts Composition System. Volume I contains the results of the 11th Missile
Application development. Volume 11 contains the results of the CAMP Armonics Benchmarks Suite

development.

Commercial hardware and software products mentioned in this report are sometimes identified by
manufacturer or brand name. Such mention is necessary for an understanding of the R & D effort, but
does not constitute endorsement of these items by the U.S. Government.

. ACKNOWLEDGEMENT

Special thanks to the Armament Division Deputy for Armament Control Office; to the Software
Technology for Adaptable, Reliable Systems (STARS) Joint Program Office: to the Ada Joint Program
Office (AJPO); and to the Air Force Electronic Systems Division, Computer Resource Management
Technology Program Office for their support of this project.

| Accession For
{ms GRA&I
;
!
{

DTIC TAB
Unannounced
Justification .

Oox0

! By
;l__gistribugiqn/

'_Mﬂvailability Codes
; |Avail and/or T
st [Special

e

- -+ = porgm ey

T -

TRADEMARKS

The following table lists the trademarks used throughout this document:

TRADEMARK TRADEMARK OF
ACT Advanced Computer Techniques
ART Inference Corporation
ART Studio Inference Corporation
CMS Digital Equipment Corporation
DEC Digital Equipment Corporation
Mikros Mikros, Inc.

Oracle Oracle Corporation

Scribe Scribe Systems

Symbolics Symbolics, Inc.

Symbolics 3620 Symbolics, Inc.

TLD TLD Systems Ltd

VAX Digital Equipment Corporation
VMS Digital Equipment Corporation

Section

II

m

Table of Contents

1.

2. Goals and ODJECIIVESoccverivniircererriiieisirs et sssssnsesssssessssespsssssisesssssesasssanses
3. DElVETADIES ..ottt s s s ne aa
4. Organization of the REPOIt ..o

DEVELOPMENT AND TESTING OF 11TH MISSILE APPLICATIONcccoceviieeninnn

What Is the 11th MiSSIle?ccoviviviiiniiiiiiiiisissnniiinsesississossenssnsssaseses
2. Eleventh Missile DevelOpmentvoviiiinnnciien s
a. Requirements Development ..o
(1) Navigation REQUITEMENLSc.ccccoivniniinniininnssssesesssseses

(2) Guidance ReqQUITEMENLSc.covrmicnmmimmenisisiassss s

(3) Interface REQUITEMENLSccciiiinmmmininnnmmisismnnnissios

By EmETHDTE T crrereroor oo oo oo A O 0 DGR
(1) Object-Oriented DESigNccccecvivinimiiiininissmisniem

(2) The Architectural Design ProCeSscismcnmiineensnsinimsonie

¢. Detailed Design and Codecoovimniininninisisss
Unit and Component Level Test Methodscccovvinneinmecssnsnsnesmmnese

(1) Unit Test APProachccvivinieininiesissesenniseenssssssessinssssssssessessres

(2) PIOCESS .oveeiiiiriirerereriresiinnerenneeessssnraniesenesinsssssassssoneresssnsasasnssnsssnnsssssnsnsnssnsse

(1) Requirements Mapping TOOIS ...
(2) Design Visualization TOOISc..cccoeivrnrernsecrennienssrensessnesarnsssnsseesssnsnesens
(3) Documentation TOOISc.cceveveiniiciinnnnnrieneconieiseessessacsssarsreessssansssasasense
@) AeBERITHES om0 O s
(5) TESETOOLS ..oocnviiicivenireiveriieeniereresereessnssseressnesessrnessressasnanesesnsasssaesssnnessovanasss
(6) Other Software Development TOOISccocevremmniiieinessensiea.
(7) Management TOOIS ...t st ssenssiessasssssnssnans

EVALUATION OF THE CAMP PARTS AND THEIR USE IN THE 11TH MISSILE

APPLEICATION ..ottt cetec st e s e seecsasessas e st ssasenssssnes sessssvasaesansaassesesnaesens
o PROAUCTIVILY oo sst s e sssnee e s s ares e st e senenesbeane
2. Parts: Where They Were USed ..ot siesnsssssssssessssssnens
Parts: Used, Modified, Unused, And Whyociviinnnrenniesenesene s

A, Baseline VerSiOn ...t s rerssessenseessssensssserssssssassssens

(1) Parts MOQIfiedccovviriiiiiiiiine i cnessnesesie s anraesasssssessessesssasesaneos

(2) Parts NOtUSEAocvievieiieciiiresecrnrtnesiessnesssrisensessseesssssessssssesesssesssnanes

17

Section

Vi

v

Table of Contents (cont’d)

Tide Page

D, Tested VEISIONcocvviiiiininiiisiisreneisiniiinssas ctsssissssssmisnsssssresesmssssssssnsnes 37

4. Parts Changed ...t et ss e s esssts e sass e sessass st snetans 38
EVALUATION OF THE PARTS COMPOSITION SYSTEM AND ITS USE IN THE

11TH MISSILE APPLICATIONccoviiniinninnninininesssiisssiensssssaiees 44

Lo PTOGUCHIVILY ..ottt et smencsessne s sss s b s snersasssssastsssansrsnnsesssrnssessoses 44

2, PCS: Where It Was USedccociouirvnenrcrmensmensnirsnnesamsnsseessessssssnssssesssssssass 45

3. Parts: Used, Modified, Unused, And Why ..., 46

4. PCS: PIrODIEMS ...ttt sttt e are st sassa st st st ssa s e s semasases 46

EVALUATION OF ADA AND ITS USE IN THE 11TH MISSILE APPLICATION 48

1. Effectiveness of Ada for Machine Input/Output - An Examplecccoevinneerirsninns 48

a. Description of the Bus Interface Module (BIM) Interfacecccoueeivininnunnnne 48

b. Ada Solution (0 the BIM INtErfaceccoveniinnienssnsinmninimseieiens 52

2. Ineffectiveness of Ada for Operating System Interfacecconiccineicssiesisennens 54

3. Use of Oplional FEAUTEScoviviiniimsensnsnisniinmnisisemansscmssssmsisissesissssisesss sssios 58
EVALUATION OF AN ADA COMPILER AND ITS USE IN THE 11TH MISSILE

A D L A T) N e T — 61

1. Compiler Problems and SOIUtONSccccovmimmnnininsnnnniis s 61

a. History of Compiler UlliZationccoiiiivininincnsnmminneenn. 61

b. Summary of Problem Reportscccoviirinminniniensimninissnsssssasssianes 62

¢. Some Compiler Problems and Work-Aroundsc.cvnmieniorcsenscenenssses 65

(1) GENETICS .ovvvvrvivirnireresnneneesenesrsnsntessresinensessesassossssesanentonstsssssesressssosss sonsessnanss 65

(2) Separate SUDUDILSccocoivieriinrinniinnnnissrirsis s ssassssass 66

(3) Parameter PasSifgccconeennrinanissimenesssnsssssnimsessmsssessssssessrsssssssnees 68

(4) Machine Code PaIChEsccoevvunrrenrrirenriniecsrsnuesssennasnsiosmessessssansaesssassssanss 68

(5) Memory UUHZALONcoevuevinninininnieiinc i ssesisenss 68

2. Compiler INEfiCIENCYcocceiivmiiniieinstiiinsniias s s s e sssasees 76

B, WEH ST e e e PO SO D GGG 76

D, GEIHETICS ...iccvvveeriireiirerisresnisesnssssesssasssesisassisssnsassessessesnssssessratssesssssessosssssssssasss 78

C. Temporary Data SPACEccovvuiviiimsnsimiinnsnninsssiesssnimsssssssnnssssiesssasnes 79

d. Other Causes of INEffiCIENCYeccivireecrinnniiriiss e sesssanas 80

¢. Are These Compiler Problems? ...t 80

CONCLUSIONS AND RECOMMENDATIONS ... 82

L. CONCIUSIONSoovvicerieiriecinnrere s st st ssrse e ena s st srese st sbssas s s s bbb n b se bbb 0e s 82

2. ReCOMMENUALONScouvrrecrercrrentracneneseesanessesesemssssesesnssnrsss cvsesenemtssssssatssesesrses sessessssess 83

a. Modifications to Partsocovuiimiiis s 83

vi

Table of Contents (cont’d)

Section Title

b. Modifications to the CAMP PCSoommrviivinncnmnnssmssssssiessssssanens

c. Suggested Ada Language Improvementscoecrveinecnes e

Appendix 11th MISSILE USAGE DATA BASEcccoveivennnncissnnne
1. Introduction and Backgroundcccoevvnrvnnsnreirieseens

2. Database ISSUESoocminirinreininmniiiininiemsememmmmisieas s s sassssses

vii/vidi (Blank)

e
-~ - IS B SV TN - U Yy 'g

W W W W N NN NN N
DREISIQ T e X»IBIRREUR/DNREEBEEEITaEoD =

List of Figures

Title Page
11th Missile Hardware DESIgNoccvirinrivninniniseesnieeisssssimssssssasesssisseses 4
11th Missile Requirements Came From Several SOUTCESomvreniniivnmrasnsesmsessesasnes 5
Package Kalman_Filter Structure CRArlcovvirversrirmimnenissssmierssssisesnsssnsssssssesessos 7
Legend for Kalman_Filter Structure ChArtccoviveiniiniiniiinissnss s 8
NAYV Computer Top-Level Decomposition: Environmentcocvveiennsiercrninennaenes 10
NAV Computer Top-Level Decomposition: Nav_Softwareuiinnnieninn, 11
Package Alignment_Measurementsc.ccevviininniivinssmnsiniessssseseisessessisssses 13
Procedure Cancel_Measurementccceeiiieninicsmsiiesmmmsmessimmssasssisssen 14
R £ ST 1] cromormrrrrrmr oo o e oo AR X T RGO U KT 15
Hardware COnfIgurationsvcceesinisiniinnniniiesnmmsinenmiiomsnssesmniis s 16
Code for Three Compilers Combined in One Filecciiinniininmi. 23
NAYV Computer Parts USABEcccvrnsirieiinniiiinninieiimimsmsimesiesmeesssssne 30
GUID Computer Parts USAEc.cciuvverrinininieinniisesssnnnininisenssssssnsssssssssssssssseness 30
Possible New Representation of Kalman Matrix ... 47
BIM/1750A INETFACEoccccireriniminsnciirsiisaniiiiiisesns srsressesissssmsssssssssasasessssssasassessessase 49
Use of INEITUPt EMMEY ... s ssseessssssose 52
Example of Record Representation Clauseccvueivieniimmnnmnmmninen e 53
Representation Clause for Variant Record ... 55
Module Reset_Sys_Enable_ROMccoivnriinnimnisnnneimmmsmissemisisssssssssssisnes 56
SURMOS INEIACEoovvvivieirinnrinniririsiisnsiissnensi e sessibssis s s sassssssasssssaassanesssnsns 56
Machine Code INSErtioNcocoivveniininniiinii s s e nes 57
Forcing a 32-bit ACCess TYPE ..ot esssescassssss 60
Forcing a Fixed-Point Representation without Using 'Smallccovvncisanniirinennens 60
Problem Reports by Month, "Compiler B"ccovuireiinmnminiinssnsns 63
Cumulative History of Problem Reports, "Compiler B"ccoviriincrresisesnssnennnnne 64
Code Before Manual InStantiation ..o s 66
Code After Manual InStantiation ..o s 67
Legend for DIagramscccevviminsioneimimiesiminemsimmenmmmmmsmsss e esssonssassssssns 69
Baseline Guid_Compuler Procedureoviiinienininsnmaismiissssaceosses 70
Baseline Guidance_Operations PACKAZeccoccvviiiininiinimiemiisnene 71
Modified Guid_Computer Procedurecocoiiininiininniimiiaeseases 72
Modified Guidance_Operations Package Ceerseresressesesaesaressarasaassnaeserssnsasnrees 73
Section of Code Before Manual In-liNgc.cococviiiveniiinniicnnosicmeimsisimssosnn 75
Section of Code After Manual IN-lNiNEcooceeiininiiniinmmimrsnsesesssieesss 76
Saving Stack Space Using Enclosing Procedures ..., 77

Figure

37
38
39

List of Figures (cont’d)

Tide Page
Recommended Change o Matrix_Operations ... 84
Recoinmended Change to Matrix_Scalar_Operationsccevnvenvinnninnniineneisnen 85
Recommended Change to Matrix_Vector_Multiplycooivvnnininiiinniniinn, 86
Recommended Change to Matrix_Mattix_Multiplycoovvreirenmnneninnncreerrsienninnons 87

Table

W AW N -

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
A-1
A-2

List of Tables

Title Page
The CAMP DOIMAINoocervrrrnirierene ettt ssss st s ssr s b obs s ssaebsbsassssnsabsssssss et 3
Processors and Their FUNCUONScccimiiiiniiiimennienemiemimisssss
Unit- and Package-Level Test Decision MAtrix ..., 12
Tools Used by Software Development Phasecccevveiviininmnnniimmomisiesii 17
Navigation TLCSC Functional Allocation to Lower Level Computer Software Com-
POMEIILS!ociriusiususuoisusncseisnsasisasansasstssasessnasstsasassssnsasssssassessassessassessassensionansssonnsosasaonssasess 18
NAYV Compuiter MesSage Map ..o isssemssssissssnins 20
11th MisSile EffOrtcovireccnniiiiiiniesniies st sisnsssssssssesssssnssssssssstins 26
11th Missile Size - Parts Methodccvimviiiininiiinisieessemoosns w . 26
11th Missile Productivity - Parts Methodcccoiininiinnninnininnen. 27
Effect of Parts on 11th Missile Effortccovvnnrininnninnnininennns 27
Summary of CAMP Parts Usage - Parts Methodccoveeeriiieiiinnincinniinian, 33
Summary of CAMP Parts USedccccovveiiinineninncininniinnmirsmssoesssins 34
CAMP Parts Modifiedoiiviniiiininiiiniinisinisiimssisesasess 34
Polynomial Parts Used For Trigonometric FUNCHONScoveninieinmnininnessnoneneens 35
Summary of Parts Not Used By 11th Missile ..o 36
Parts Incompatible with 11th Missilecocoovv i 37
Parts Manually Instantiated in Guid_COmMPULEToccovviinivnniiinninnieses 38
Parts Manualiy Instantiated in Nav_COMPULETocoerrcrnvcrernnnsnscesmsmsmmsssesssssassesassass 39
Parts Changes and Enhancements Gencerated By The [Ith Missile Development 40
Fith Missile Size - PCS Methodcoiiiiiiininniininnisminsssnsssonsssssseisss 4
Estimated Effect of PCS on 11th Missile Effort ..o 45
Summary of CAMP Parts Usage - PCS Methodccocnviiiiiinininnnenne 46
Bus Interface Module Command Word ... s 49
Bus Interface Module Status WORdccvvmriniiiiniiennsinnenmninsmisisessssssisses 50
Bus Interface Module [nitialization BIOCKcccovvvevmmmnnnnnnninnnnnecsnsens 51
Use of Optional Ada Features By 11th Missile ..., 59
Problem Reports by Category, "Compiler Bccovmivniinininmiiies 62
Use of Generics in Baseline and Modified SOftwiirecc.cvvnivennnniinmmmiominme. 74
Separate Subunits and Files Compiled ..., 74
Parts Usage Fields and Descriplionscccoovviiiininminnmnminsessss 91
Parts Usage and Code COUNL ... sssssssss 93

List of Acronyms

ACS Ada Compilation System

ACVC Ada Compiler Validation Capability

AdJJUG Ada/Jovial Users Group

ADL Ada Design I anguage

AFATL Air Force Armament Laboratory

AFB Air Force Base

Al Antificial Intelligence

AJPO Ada Joint Program Office

AMPEE Ada Missile Parts Engineering Expert (System)
AMRAAM Advanced Medium Range Air-to-Air Missile
ANSI - American National Standards Institude

APSE Ada Programming Support Environment
Armonics Armament Electronics

ART Automated Reasoning Tool

ASCHl American Standard Code for Information Interchange
BC Bus Controller

BDT Basic Data Types

BIM Bus Interface Module

CAD/CAM Computer-Aid Design/Computer-Aided Manufacturing
CAMP Common Ada Missile Packages

CCCB Configuration Change Control Board

CDRL Contractual Data Requirements List

CMS Code Management System

ConvFactors Conversion_Factors (TLESC)

CPDS Computer Program Development Specification
CPPS Computer Program Product Specification

CsC Computer Software Component

CSCl Computer Software Configuration Item
CVMA Coordinate_Vector_Matrix_Algebra (TLCSC)
DACS Defense Analysis Center {or Software

DBMS Data Base Management System

DCL DIGITAL Command Language

DDD Detailed Design Document

DEC Digital Equipment Corporation

DMA Direct Memory Access

DoD Department of Defense

DoD-STD
DPSS

DSR

DTM

FMS
FORTRAN
GPMath
HOL

Hr

1/0

ISA
JOVIAL
LISP
LLCSC
LOC
MDAC
MDAC-HB
MDAC-STL

MIL-STD
MRASM

NPNav
oCu

PC
PCS
PDL
R&D
RT
RTE
SDF
SD1
SDN
SDR
SEAFAC
SEl

Department of Defense Standard

Digital Processin-, Subsystem

Digital Standard Runoff

DEC /Test Manager

Forms Management System

FORmula TRANslation
General_Purpose_Math (TLCSC)
Higher-Order Language

Hour

Input/Output

Inertial Sensor Assembly

Jules Own Version of Intemational Algebraic Language
List Processing (language)

Lower Level Computer Software Component
Lines of Code

McDonnell Douglas Astronautics Company
McDonnell Douglas Astronautics Company - Huntington Beach
McDonnell Douglas Astronautics Company - St. Louis
McDonnell Douglas Corporation

Military Standard

Medium Range Air-to-Surface Missile
Nautical Miles
North_Pointing_Navigation_Parts (TLCSC)
Operator Control Unit

Operations

Personal Computer

Pants Composition System

Program Design Language

Research and Development

Remote Terminal

Real-Time Embedded

Software Development File

Strategic Defense [nitiative

Software Development Notebook

Software Discrepancy Report

System Engineering Avionics Facility

Software Engineering Institute

xiii

SEP/SCP
SIGAda
SRS
STARS
stmt
SURMOS
TLCSC
TLDD
UnivConst
VAX
VMS
WGS72

Software Enhancement Proposal/Sof: ware Change Proposal
Special Interest Group on Ada

Software Requirements Specification

Software Technology for Adaptable, Reliable Systems
statement

Start-Up Real-time Multi-tasking Operating System
Top-Level Computer Software Component

Top-Level Design Document

Universal_Constants (TLCSC)

Virtual Address Extension

Virtual Memory System

World Geodetic System, 1972

SECTION 1
INTRODUCTION

1. PURPOSE

This report contains a description of the work performed, the results achieved, and the lessons
learned on the 11th Missile Application of the Common Ada Missile Packages Phase 2 (CAMP-2)
project. CAMP-2 was a multi-year research effort in which the McDonnell Douglas Astronautics
Company-St. Louis (MDAC-STL) demonstrated the feasibility and value of reusable Ada software parts
in embedded, real-time, mission-critical, DoD applications. This was accomplished by (a) building a
library of efficient and reusable Ada parts for missile flight applications, (b) building a prototype parts
composition system (PCS), and (c) testing the parts and the PCS by using them on an actual missile

application (the 11th Missile).

The CAMP project has been sponsored by the Air Force Armament Laboratory at Eglin Air Force
Base, and partially funded by the Air Force Armament Division; the DoD Software Technology for
Adaptable, Reliable Systems (STARS) Program Office; and the Air Force Electronic Systems Division.
The Ada Joint Program Office (AJPO) sponsored the initial distribution of CAMP Ada parts to 120
Government agencies and contractors. This software is now available through the Air Force Defense
Analysis Center for Software (DACS) at Griffiss Air Force Base, New York.

2. GOALS AND OBJECTIVES

The overall goal of CAMP-2 was to demonstrate the technical feasibility and value of reusable Ada
missile parts and a PCS by building and using them on a realistic application. The 11th Missile Applica-
tion involved the construction of an actual missile application using the Ada parts and the PCS, and
testing of the developed system in a MIL-STD-1750A hardware-in-the-loop simulation. The initial goals
of the application are enumerated below.

1. Construct a complete missile application using CAMP parts and the PCS, and test it in a 1750A

hardware-in-the-loop simulation.

2. Evaluate the suitability of the CAMP parts and the PCS for real-time embedded missile applica-

tions.
3. Test the CAMP parts and the PCS. and recommend corrections and improvements.
4. Quantify the productivity improvement attributable to the use of CAMP parts and the PCS.

Although not explicitly stated as goals, the 11th Missile Application also served as the basis for (1)
an evaluation of the suitability of Ada for real-time embedded missile applications, and (2) an evaluation
of the suitability of an Ada/1750A compiler {or real-time embedded applications.

3. DELIVERABLES

The deliverable products of the 11th Missile Application were:

1. Software Requirements Specification: The requirements of the missile application documented in
accordance with DOD-STD-2167, AFATL-TR-88-24, Volume 1,

2. Top-Level Design Document: The architectural design for the 11th Missile system documented in
accordance with DOD-STD-2167, AFATL-TR-88-24, Volume 2.

3. Test Plan: The plan by which the 11th Missile system was tested in accordance with DOD-
STD-2167, AFATL-TR-88-22.

4. Test Report: The results of testing the application in accordance with DOD-STD-2167. This
includes an evaluation of the 11th Missile development.

4. ORGANIZATION OF THE REPORT

Due to the large amount of data to be discussed in this report, it has been divided into three volumes.
The remaining sections of Voiume 1I are organized as follows.

o Section I describes the development and testing of the 11th Missile Application.

o Section III evaluates the CAMP parts and their suitability for real-time embedded missile applica-

tions.

e Section IV evaluates the Kalman Filter Constructor, which is part of the CAMP PCS, and its
suitability for real-time embedded missile applications.

e Section V evaluales the suitability and effectiveness of the Ada language for real-time embedded
missile applications.

e Section VI evaluates the suitability of an Ada/1750A compiler for real-time embedded missile
applications and shows how to "work around” the problems encountered.

e Section VI contains conclusions and recommendations.

Volume | describes the development and testing of the CAMP parts and the PCS. Volume Il
describes the developtnent and testing of the Armonics Benchmarks.

SECTION 11
DEVELOPMENT AND TESTING OF 11TH MISSILE APPLICATION

1. WHAT IS THE 11TH MISSILE?

The CAMP parts and parts composition system (PCS) were designed and implemented following a
domain analysis of ten missiles (see Table 1). To test the parts and PCS in a realistic setting, an "11th
Missile" was held in reserve and a portion of its software was implemented using them.

TABLE 1. THE CAMP DOMAIN

I. Flight Software for the Medium Range Air-to-Surface Missile (AGM- 109H)
Flight Software for the Medium Range Air-to-Surface Missile (AGM- 109L)

3 'S,:npdown Inertial Navigation Program for the Unaided Tactical Guidance
oject

4. ?uidnncc and Navigation Program for the Midcourse Guidance Demonstra-
ion

S. Flight Software for the Tomshawk Land Attack Missile (BOM-109A)

6. Flight Software for the Tomahawk Anti-Ship Missile (BGM-109B)

7. Flight Software for the Tomahawk Land Attack Missile (BGM- 109C)

8. Flight Software for the Tomshawk Land Attack Missile (BGM-1090)

9. Flight Software for the Harpoon Missile (Block 1C)

10, Safeguard Spartan Missile

The 11th Missile Application was based on a cruise missile application that was originally im-
plemented in JOVIAL J73. The original application had five MIL-STD-1750A processors and an Inertial
Sensor Assembly (ISA), which communicate by means of a MIL-STD-1553B data bus (see Figure 1).
The shared memory contained terrain altitude data. The processors and their primary functions are shown
in Table 2. In addition, all processors were programmed to perform the following support functions:

¢ Restart the application program
e Return control 1o start-up ROM
¢ Communicate via the 1553B bus

o Issue periodic status messages

The 11th Missile Application is a re-implementation (starting with a new requirements specification)
of the navigation, ground alignment, Kalman filtering, ISA interface, lateral guidance, lateral-directional
autopilot, and support functions of the original software. The navigation, Kalman filtering, lateral
guidance, and lateral-directional autopilot were chosen because there were CAMP parts to support those
functions. The other functions were required to complete a functioning computer program.

Data Processing Subsystem

Processor Processor Processor

Guidance Cozrelation J Control

T el

Sensor
Systems v :§§ 15538 Bus %
| navigation | Tneztial
Processor : M::l::fl

11th Missile
System

Figure 1. 11th Missile Hardware Design

TABLE 2. PROCESSORS AND THEIR FUNCTIONS

Processor Functions
Control Communicates with operator console
Downloads, starts, and stops software in all other machines
Mode logic
Navigation Wander-azimuth navigation

Transfer alignment

Ground alignment

21 -state Kalman filter

Start up, test, and communicate with ISA

Guidance Waypoint-sicering latesal guidance
Vertical guidance
Lateral-directional autopilot

Correlation Dedicated to Terrain Profile Matching

Sensor Controls sensor system hardware

Two versions of the 11th Missile Application were written. The first version (“Parts Method") was
written using the CAMP parts, but not the CAMP PCS. The second version ("PCS Method") used the
PCS to generale Kalman filter code. The PCS Method implementation was not a complete rewrite of the
code; rather, the PCS-generated Kalman filter code was integrated with the rest of the Parts Method code

and unit tested.

2. ELEVENTH MISSILE DEVELOPMENT

a. Requirements Development

The 11th Missile requirements were developed in accordance with DOD-STD-2167, and
documented in a Software Requirements Specification (SRS). This specification combined elements of
the existing application’s navigation, guidance, and interface requirements (see Figure 2).

NAYV GUID Interface

CcCPDS B-5 -

r,.d"
7
CcCPPS
L~
?
ADL and

JOVIAL J73
Code
= 11th
Missile
//’-—> SRS
Developers

Figure 2. 11th Missile Requirements Came From Several Sources

(1) Navigation Requirements

The 11th Missile navigation requirements came from several sources. The existing
application’s navigation requirements were documented in a MIL-STD-1679 Computer Program
Development Specification (CPDS), but it was badly out-of-date; it served primarily as an outline of the
high-level requirements. There was also a MIL-STD-1679 Computer Program Product Specification
(CPPS), which included Ada Design Language (ADL) and which was more nearly up-to-date. Interviews
with the original software developers were necessary to determine which requirements had changed since
the CPPS; in these cases, the requirements were abstracted from the updated ADL or, occasionally, from
the JOVIAL code.

(2) Guidance Requirements

The guidance requirements for the existing application were specified in a MIL-STD-483
B-5 development specification. The lateral guidance and lateral-directional autopilot algorithms were
reused from the Medium Range Air-to-Surface Missile (MRASM) program, therefore, these requirements
were stable and the specification was up-to-date and complete.

The 11th Missile team discovered an error in the autopilot requirements while developing
the open-loop integration test for the Guid Computer. The problem was referred to the requirements
group for the existing application; they verified the error and corrected their requirements specification.
The CAMP project corrected the 11th Missile SRS to conform (o the revised requirements.

(3) Interface Requirements

The 1553B bus protocols and the formats of all bus messages were specified in a database
maintained by the original application. That project used the database to automatically generate the
JOVIAL code that specified the message formats for the application programs, the FORTRAN code for
the real-time-simulation software, and the interface requirements specification. The 11th Missile team
used the database to get up-to-date message specifications and change notices.

b. Top-Level Design

(1) Object-Oriented Design

In an object-oriented design, the requirements are functionally decomposed and assigned
to Ada packages. There may be several levels of decomposition, which generally correspond to nested
Ada packages.

In the 11th Missile implementation of this method, tasks are subsidiary to packages. Tasks
were generally not defined in a high-level package specification. If a task had to be invoked from outside
the high-level package, an interface procedure to call the task was provided. Tasks were used primarily
for control; they called on packages to execute the controlled functions. A good example of this type of
design is the Kalman_Filter package (see Figures 3 and 4).

NCDT Env KFcp KFCtHP KFCxHP
Kalman Filter \U/
WV NV WV U
'_9@ Phi_Q_
TR Management
L
Initialize \ aiaagement
Perform_F_\ i
Element_ F_Management
Summation X_Management
ry_To_Put)
Current_Time ——
Heason-
uencer
Try_To_Get = . ableness_
Navigator_ Tests
Corrections
el Alignment Kal
Alignment_ Discrotes man_
Discretes Comections
est_
Code Kalmﬂl"l_
Updates
AN AN AN
Kalman Kalman
|_Generics Types_ ADS

Figure 3. Package Kalman_Filter Structure Chart

Package
Subprogran
Object
Position Meanings
Invocation
CID Visible
—
™
[N
Hidden
With'd Nith'd
By Spec by Body

Figure 4. Legend for Kalman_Fiiter Structure Chart

This philosophy was not always followed. For example, the BIM_Interface package was
wrilten before these design decisions were made, and contains a large task which is directly visible and
which does its own processing.

Tasks cannot be completely ignored at the system level, however. The architectural design
had to specify the processing priority of each task.

(2) The Architectural Design Process

In this section, the Navigation Processor design serves as an example of the architectural
design process. The two major LLCSCs of the Navigation TLCSC are Environment and Nav_Software
(see Figures 5 and 6). The Environment LLCSC provides the interface to all external devices, while
Nav_Sofiware performs the navigation, alignment, quaternions, and Kalman filtering functions.

The first step in the architectural design was to go through the SRS and determine all the
places where CAMP parts could be used. An annotated copy of the SRS showed where each part applied.
The resulting parts list was used to drive the architectural and detailed designs, and maximize reuse of

existing parts.

The next step was to "rough out” the decomposition diagram (see Figures S and 6), struc-
ture charts, and the Ada package specifications. See Figure 3 for a sample structure chart. Different
approaches were used for the two major LLCSCs. The Environment LLCSC was implemented as a
single package; the Nav_Software LLCSC was implemented as five packages, since a single package
would have been too large.

The top-level design went through sev. - iterations. In general, each iteration hid more
data, i.e. material moved from the package specificaiion to the body. Also, as the design developed,
lower-level packages were created and the required functions were mapped to them. The end result of
this process was Ada code for the package and (ask specifications, skeleton Ada code for the task bodies,
the top-level decomposition diagram (see Figures 5 and 6), and a series of structure charts.

The architecture was informally reviewed by the design group as it developed. The CAMP
Program Manager reviewed the architecture twice; these reviews concentrated on the decomposition
diagram and the structure charts. Formal walkthroughs of the high-level Ada code followed the final

management review.

¢. Detailed Design and Code

Detailed design and coding were combined into one phase. In some respects this phase was a
continuation of the top-level design process.

Each high-level package was assigned to a single designer, who was responsible for the detailed
design, code, and headers. All design/code was walked through by the entire 11th Missile team. There
was at least one walkthrough for each package. the larger packages (e.g., Environment, Kalman_Filter)
were broken down and underwent several walkthroughs. The walkthroughs sought to ensure that the code
met the requirements, interfaced properly with other code, conformed to project standards, and had com-

plete headers.

NRWUONATY sonisodwoda([dAy1-do]

ndwo) AVN s 35adyg

[EE [F.

S R,
. EEEh |

SIVWRIOd
-JOVSSIN
-Sna

SLVINHO3

\g ‘ ~FOVSSIN
JOVSSIN -S08 A D
=
N

IS
NOLLYDIAYMN

?lzﬂﬂsﬂr_ 7 @
_H.wmalrﬁiiﬂu 3 Hﬁﬁ:

Bw z

@@l
@

ﬁl
==

ey
._jlﬂﬂ-ﬁ |

Tl =

.rﬂ,.%@ h.mﬂ.%

d. Unit and Component Level Test Methods

In general, the t1th Missile team tested both units and packages (components). Usually unit-
and package-level tests were separate, but occasionally they were combined or the package-level test was
skipped. Table 3 presents the decision matrix that was used to determine the level of testing that was

required.

TABLE 3. UNIT- AND PACKAGE-LEVEL TEST DECISION MATRIX

| Case |

1 | 2 | 3 | 4 | 5 |
... |
jCondition | | | | | |
Onit {f -	Simple	Simple	Complex	Complex	
Interaction	None	Simple	Complex	Simple	Complex
Tests Required)	
Unit [4		Part of	Y	Y	
}		package		{	
		Combine	test		
Package	N] Y	Part of	Y	
				unit	
				tests	

- e e O o e e e e R e e e e e e e D A e S

Package-level testing was not required if there was no interaction between the units in the
package. For example, Kalman_Types is a collection of data type definitions and operators; no data is
stored in the package body and the units do not invoke each other.

If the units and the interactions between them were both simple, the unit tests were folded into
the package-level test (e.g., Alignment_Measurements) or the unit tests covered the package-level test
requirements (e.g., Quaternions).

If the units were complex, then unit-level tests were always required. If the unit interactions
were simple, the package-level test requirements could be covered by the unit tests (e.g., BIM_Interface);
if complex, a separate package-level test was required (e.g., Kalman_Filter).

The CAMP parts were assumed to be correct and were not tested separately. They were tested
indirectly as part of the units that invoked them.

(1) Unit Test Approach

The 11th Missile team designed unit tests to cover both white box and black box view-
points. A white box test is designed with knowledge of the unit’s structure. The test cases are set up to
exercise all paths through the unit and (o invoke all branch conditions. A black box test is a functional
test that assumc < nothing about the unit’s internal structure. It passes in a representative sample of input
data and checks to see if the output is as expected. The Alignment_Measurements package will be used
to illustrate these two approaches to unit testing.

The Alignment_Measurements package (see Figure 7) takes a sequence of integrated
velocities from the navigator, keeps and corrects running sums of them, and periodically formats the sums

12

into measurements and sends them (o package Kalman_Filter. Calls to control procedures (Initialize, Set_
Measurement_Time, and Cancel_Measurement) initialize the package, specify when a measurement is to
be sent 1o Kalman_Filter, and occasionally cancel a measurement. Integrate, Put_Reference_Velocity_
Integrals, and Apply_Kalman_Position_Corrections receive data needed lo compute or correct the
integrated-velocity sums. Get_Integrals returns the current integrated-velucity sums.

with Nav_Computer Data_Types;
package Alignment_ Measurements is

package NCDT renames Nav_Computer_ Data_Types;

procedure Initislize (Init:l.nl_'!m : 4in NCDT.Seconds;
Reference Altitude : in NCDT.Feet FP;
Velocity : in NCDT.Velocity Vectors);
procedure Integrate (Eff Time Of Incr Data : in NCDT.Seconds;
Velocity : in NCDT.Velooity Vectors;
Altitude : in NCDT.Feet_ErP);

procedure Put Reference Velocity Integrals
(X_Velocity Integral : in NCDT.Feet FP;
Y _Veloocity Integral : in NCDT.Feet_FP);
procedure Apply Kalman Position Correution
(Position Error X : in NCDT.Earth Position_Radians;
Position _Error Y : in NCDT.Earth Position Radiane);

procedure Get_Integrals (Integrated Vel X : out MCDT.Feet_FP;
Integrated Vel Y : out NCDT.Feet FP);

procedure Set Measurement Time (Time : in NCDT.Seconds);
procedure Cancel_ Measurement;

end Alignment Measurements;

Figure 7. Package Alignment_Measurements

A black box test would invoke the package with a sequence of control and data calls,
verify that the current sums returned by Get_Integrals are correct, verify that the package sends correct
measurements to Kalman_Filter at the correct times, and verify that a measurement is not sent if it has
been cancelled. The test designer would use the requirements specification and the Ada package
specification to develop the tests.

The white box test designer would also use the package and procedure body listings to
generate test cases that cover all the paths and exercise all the branch conditions. For example, the white
box test of procedure Cancel_Measurement (see Figure 8) would call this procedure twice, once with
measurement_pending true and once with it false. (Measurement_Pending is stored in the package body.)

with Environment;

separate (Alignment_ Measurements)
procedure Cancel_ Measurement is
begin

if Measurament_Pending then
- --send invalid measuramant to the Kalman

Environment .Heasurements.Nere_is_Alignment Measurement
(Time_of_ Alignm Data => Measurement Time,

Alignm Valid => FALSE,
MeasX => 0.0,
MeasY => 0.0,
Meast => 0.0,
VarX => 0.0,
VarY => 0.0,
Varl - 0.0);

- ~--cancel measurement pending flag
Measurement Pending := FALSE;

end if;

end Cancel_Measurement;

Figure 8. Procedure Cancel_Measurement

The Alignment_Measurements test was primarily a black box (i.e., functional) test, with
some additional test cases 1o cover the white box criteria.

(2) Process

After a unit had been walkcd through and approved, the unit's designer wrote the test
procedure. Procedures were written in DoD-STD-2167 format, and each one was reviewed by the entire
11th Missile team. An engineer other than the unit’s designer wrote the test driver code sad executed the

test.

Most unit and package tests were first executed on the VAX using the DEC Ada compiler
(see Figure 9). This approach was originally adopted because of the problems encountered with the early
Ada/1750A cross-compilers. There was an unexpecled productivity benefit, however, because DEC's
program debugging and library management tools were much better than those provided by the 1750A
cross-compiler. Errors could be found and cormrected much faster with DEC’s tools than with the cross-
compiler’s tools. These units were then tested on a 1750A simulator or 1750A hardware. Since the code
and the test drivers had been checked out, these tests were primarily to debug the 1750A cross-compiler,
time the software, and check numerical accuracy.

14

Some units (e.g.. the 1553B bus interface) could not = ineaningfully tested uniess they
were compiled by a 1750A-targeted compiler, and so were first tested on the 1750A Simulator.

VAX

1750A
Simulator

1750A
Hardware

Open-Loop

1750A
Hardware
Closed-Loop

Unit and

Component Tests Integration Tests

Figure 9. Test Approach

e. Integration and Hardware-in-the-Louop Tests

The Laser Guidance group of McDonnell Douglas Astronautics Company developed the
simulation facility used by the 11th Missile Application: the 11th Missile Application software was
developed to be consistent with the requirements of this facility. The hardware configurations used in
integration and hardware-in-the-loop tests are shown in Figure 10. The baseline simulation setup,
Operator Control Unit (OCU) and flight Digital Processing Subsystem (DPSS), utilized two 1750A
processors. Because only one 1750A processor was available, the alternate breadboard/monitor con-
figuration was used. With this alternate configuration, the 1ith Missile Application software required
minor modifications. The Guidance computer was converted from a remote terminal (RT) to a bus
controller (BC).

The hardware-in-the-loop tests for the Guidance CSC were successfully completed, but the
Navigation CSC hardware-in-the-loop testing could not be performed given the inability of the
Ada/1750A cross-compiler to generate correct Ada code for this portion of the application and the un-
availability of work-arounds. The tests uncovered six errors in the 11th Missile Application software and
three errors in the Ada/1750A compiler code. The Guidance CSC required 87.2% of the throughput. A
more detailed description of the results may be found in the Software Test Report (Reference 1).

The | Ith Missile Application testing demonstrated that given efficient and effective Ada com-

15

VAX

fBC AT 15538 BC
EXEC ocv
SIMULATION
COMPUTER
* IPSS] |
o8 | 1R —] Morier
o NAV auD SIMULATION
o ISA COMPUTER
£IESS 15538 ,
o NAV " auo
« EXEC
o ISA
OCU and Flight DPSS Breadboard/Monitor

Figure 10. Hardware Configurations

pilers, the CAMP parts may be used in embedded real-time software. The CAMP parts were functionally
correct, but, with the current Ada/1750A compilers, most generics had to be manually instantiated (see

Section VI).

The 1th Missile Application CSCl is not effective flight software due to long execution time.
The Guidance CSC runs three times slower than a nearly equivalent JOVIAL version of the same applica-
tion. The Navigation CSC would not have been able to run in real time. The main sources of in-
efficiencies were Ada task rendezvous and the compiler's implementation of generics; Section VI dis-
cusses the Ada issues in more detail.

f. Tools

Table 4 lists the tools used by the 11th Missile team and the software development phases in
which they were used.

16

TABLE 4. TOOLS USED BY SOFTWARE DEVELOPMENT PHASE

To
Levzl Detailed | Unit | Integration
Tool Design | Design Test Test

Requirements Maps X
Message Maps X X
Decomposition Diagrams X
Structure Chants X
Digital Standard Runoff X X
Comment Extractor X
DEC Ada Compilation System X X X
TLD VAX/1750A Ada Compiler System X
Compiler Conversion Utilities X X
MDAC-HB 1750A Simulator X
MIKROS 1750A Emulator X
Hardware-In-The-Loop Simulation X
DEC Code Management System X X
Software Development Files X X
Develop Status Datab X X
Smart Code Counter X X

(I) Requirements Mapping Tools

Requirements maps were used to verify the completeness of the design. These maps (see
Table 5 for an example) correlated the software implementation and the requirements; they were used to
verify that all requirements were implemented. The maps also appeared in the TLDD. The message
maps (see Table 6 for an example) showed which element (subprogram or task) processed each 1553B
bus message, and served to verify that the software processed every bus message.

(2) Design Visualization Tools

Decomposition diagrams and structure charts were used to provide two different views of
the software design. The decomposition diagram clearly showed the functional partitions of the software;
the structure charts showed the packaging structure of the Ada code.

The two visual aids are consistent, except for the data type definition packages. For ex-
ample, package Kalman_Types is logically a part of the Kalman Filter function, and is therefore shown
below package Kalman_Filter in the decomposition diagram (see Figure 6, at the far right edge).
However, this would have forced the Kalman_Filter and Environment packages to "with" each other,
which would violate an Ada language rule. Therefore, package Kalman_Types is separate from Kalman_
Filter and appears as such in its structure chart (see Figure 3).

17

"UOTINeS ITY3 JO SIWMRITnDAI 9q3 burisem ur DS) Lzwwrad ey3 s3yzoddns 3T DSy KIwpuodes e ST STYL €«
"UOTIONS STYI JOo sudwmaTnbez ey3 J9ew 03 JSO Lxvwrad ay3 ST STYL 2
T93ndmo) vorjebraey sy3 03 Lidde jeyy ydezbered ayy 3o syved 9S0Y3 SOTISTILS I

T s e« e a s
smvvvvv
. s s e 4 e s

L] L B M B Mg I g)

S E

“mcﬁu 1°T°s’

(Part 1 of 2)
~F SCES JR

5

fmomam m o™

TO LOWER LEVEL COMPUTER SOFTWARE COMPONENTS

TABLE 5. NAVIGATION TLCSC FUNCTIONAL ALLOCATION
A< <<

Surrpuwg zozry - juessbwuwy gESST |
UOTIRITINIITUTN - Joemmbrown gcGST |
uorIoumgqns IeTpuvd abwssew 3ndyng gesst |
eoTIoungqus IeTpuen abessey Jndur gpccy |
woTioun] Jvemmbeuwy jdnzzejur |
SovzIeiul (MIW} eTHpPOM SOWEIRIUT sng €ESST |
I

mTqel sbessen sng ggsst |

{Induy) woriowmzqug sebessew sng gESST |
|

soTquz sbessam sng ggcoy |

(3ndyng) woTioumgqns sebessen smg gLoSy |
I

seTqel abwsweM sug gESST |

{(3nd3ng) wotryounyqns sebessen Fng GESST |
|

uoTIoEnIqUS J03TUOK |

sotqel abessen sng gcSST |

{3nd3no) uor3oUnyqns sabwssen sng gEgST |
(3ndux) uworlounzqns sebessen sng @ESST |
|

soTqel sbesswi sng €SSy |

(3ndanp) uor3ounzqus sabessey sng grssy |
I

sotqes abwssen sng @psst |

(3nding) wor3ounyqus sebessew sng @Lssy |
(3nduy) woTyoUNyqs sebessey sug @ESST |
|

batTesg - uworioURZUNS IWINWTITY |
UOTIIUNIGDS TeASTIINY SPOITITY |

souzrejur Indur pemseiforiy JejewTITY STIjemcTEy |

sng [eurejur

SIUMERINSTIN

IswopROIg Sng TPUIIIUT

s

{19 o)

IBIPWMTITY OTIJPWOTRY

JUIWUOITAUY

DR LoedIoday

I OSOTI

INTRESICODY IDSO

BOIIOTIY AT1lS

18

TABLE §. NAVIGATION TLCSC FUNCTIONAL ALLOCATION
TO LOWER LEVEL COMPUTER SOFTWARE COMPONENTS

(Concluded)

"UOTIONE STYY JO sjuewerTnbex 8y3 Guriesm utr 95O Arewrad ey s3zoddns 3t ‘95D Kxwpuooes v sT STQ €,

"UOTIONS STYY JO sIuswRaTnbaz ey3 Jeem 03 J5) Axvwrad eqy ST STW Z
I03ndwo) voryebravy ayy 03 Lrdde ey gdezbexed oq3 30 s3xed ssoyy setTIsTIES Ix

} |
“N« yLyel UOTIOURJQRS UOTIVITTRIITUI VST |] suorureyend |

| | | |
12 zLrre l TOTRUNIANS I8ITTS UewTey | | _ |
“NL. gTsre |l Lxy0me1eg | | I3t uvwrey |

| | | |
12s gLre | uoTIounIqus Juewbry | | sjuvewmansveN jusmmbrry |
| | ! } |
Izs €1LYel burssecoza (vor3ounyqus z03ebrawy) | 1 |
lzs 1L 9v€ | TOX3u0) $S8O013 (UvOTIDURIGUS ToFeSrARN) | I _ |
12« TT'SP°E | uoTIeINdNOD SRTE - UOTIOUNIQUS INIBWTITY | | suoryersdp worjebraey |
| | | I]
2« oLve | T023U0) SPON - ©OTIOUNE uotebramy | i |
1ZeTs 2°2°6°0°€E | shesszy snawe3s | | _ |
12« Z1vsrel spoy we3sds - uorioUNyqRs wyeq W3ysis | | woysds aey |
| | | I axeAljos aey |
| | I I i
12¢ 1« 1 -ddv | sotquy sbessen sng gcsst | { |
12T T°27°6°0°€ | (Ind3ang) uoryounzqns sebessen sng gEsST | } |
Izsls €°1°6°9°€ | (3nduy) vorjounzqus sebessen sng acsst | I |
1Zs T« T'EPE | UoTIOUNIQRS WLl TeOOT | I burssecoxg abessew |
|] | | [
12« 1= rrel uoT3IOtNy TOx3U0) We3sis | | |
| 1 (sospins) we3ysds | |]
1251+ 2°2°€°¢°¢ | butiexedo buryser-TIToM swri-Teey dg-aTess | | D |
| | [| !
12s1s 2°T°6°y'¢ | SWTL I9ISTN - UOTIDURIGMS wieqg we3sis | | _ |
12« T« Z2€¥€ | QOTIOUNIQNS IWTL IBISEN | | or1d weIsds |
I-- | f==e- i |
| LI I DR LEINDITOOTS | YZTHOR | IHYN DSOT1 | gZEHON
| sqnomiva | | BIVOWEVE | | 28011
|-- |
| I
| INIIIIOON 1050 i MOIIVOOTIV GQ1IS

|

19

TABLE 6. NAV COMPUTER MESSAGE MAP

(Part 1 of 2)

Message ID

IPSS-MAV - 40
IPSS-NAV - 41
IRSS-MAV - 42
IPSS-NAV - 43
IPSS-MAV - 43
IPSS-NAV - 50
IPSS-MAV - 51
IPSS-MAV - 852
IPSS-NAV - 53
IPSS-MAV - 54
ISA -BRD -132
ISA ~BRD -133
ISA -MAV - @
ISA -MAV - 9§
ISA -MAV - 10
NAV -BRD -130
NAV -BRD -131
NAV -EXEC- 1
MAV -GUID- 1
NAV -GUID- 2
MAV -ISA - 3
MAV -ISA - 4
NAV -ISA - 8
NAV -ISA - 6
NAV -OCU ~ 4
NAV -OCO - 6
MAV -8Cp - 2
MAV -8CP - 3
NAV -TIM - 7
NMAV -TIM - 13
NAV -TIM - 18
NAV -TIM - 16
NAV -TIM - 17
NAV -TIM - 18
NAV -TLM - 19

ISSTAT
NAVDAT

NAVPOSCOV
ATTITEXEC
ATTITGUID
ATTITGUID2
INITAT
TRINC

KALCOR

ISACMD
NAVSTAT
RTBIMERR
ALPERA
CORRECT
KALRLT2

KF_DIAG

PHIDIAGNOS

KALRLT1

KALSTER

Handled By

Kalman_Filter.Sequencer.Measurement_ Preprocessing
Knl.-ln Filter.Sequencer.Measurement Preprocessing
Rnhnn_l'u.to: Sequencer.Measurement_Preprocessing
Kalman_Filter.Sequencer.Msasurement Preprocessing
Kalman Filter.Sesquencer.Measurament Preprocessing
Kalman Filter.Sequencer.Mesasurement Preprocessing
Kalman Filter.Sequencer.Measurement Preprocessing
Kalman Filter.Sequencer.Measurement Preprocessing
Kalman Filter.Sequencer.Measurement Preprocessing
Kalman Filter.Sequencer.Msasurement_Preprocessing
Nav_Systaem.Sequencer
Environment .Message Management.Message Manager
Nav_System.Sequencer
Nav_System.Sequencer
Environment .ISA.ISA Cosm BIT_And Monitor
Nav_System.Sequencer (via Navigation_Operations.-
Execute_Navigator)
Kalman Filter.Sequencer.Update_Manager.-

Send Correction_Messages
Nav_Systea.Sequencer
Navigation.Sequencer
Navigation. Sequencer
Nav_System.Mode_Controller
Nav_System.Sequencer (via Mavigation Operations.-

Execute Mavigator)
Kalman Filter.Sequencer.Update Manager.Reinitialisze

(initial tilt correction message)

Kalman Filter.Sequencer.Update Manager.-

Send_Correction Messages (all others)
Environment . ISA.ISA Comm BIT And Monitor
Nav_System.Status_Generator
Environment .RT_BIM Error_ Eandler
Nav_System.Sequencer
Kalman Filter.Sequencer.Update_Manager.-

Send _Correction_Messages
Kalman Filter.Sequencer.Update_Manager.-

Send Correction Messages
Kalman Filter.Sequencer.Update_Manager.-

Send_Correction Messages (P and X terms)

Kalman Filter.Sequencer.Phi Q Manager (phi & Q terms)
Kalman Filter.Sequencer.Update_Manager.-

Opdate_And Send Messages
Kalman Filter.Sequencer.Update Manager.-

Retrieve_And Propagate (P props)

Kalman_| Filter. Sequencer.Update_Manager. -

Updnto And_Send Messages (P updates)
hlun_!'utor Sequencer.Phi_Q Manager (phi props)
Kalman_Filter.Sequencer.Update Manager.-

Retrieve_And_Propagate (P & X props)
Kalman_Filter.Sequencer.Update_Manager.-

Send_Correction_Messages
Kalman_Filter.Sequencer.Update_Manager. -

R.tt:lovo And_Propagate (X props)

Kalman_| rilter. Sequencer.Update Manager. -

Updnto And_Send Messages (X updates)

Kalman | Filter. Sequencer.Update_Manager. -
aond_Cor:oction__mllngol (cum errors)

20

TABLE 6. NAV COMPUTER MESSAGE MAP

(Concluded)

Message ID Msg Symbol Bandled By

MAV -TIM - 21 QDIAGNOST Kalman Filter.Sequencer.Phi_Q Manager (Q props)
Kalman Filter.Sequencer.Update_Manager.-
Retrieve_And Propagate (P props)

NAV -TIM - 23 FDIDIAGNOS Kalman Filter.Sequencer.Phi_Q Manager

MAV -TLM - 26 KIMEAS Kalman Filter.Sequencer.Update Manager.-
Opdate_And Send Messages

MAV -TIM - 28 FSUMDIAG Kalman Filter.Sequencer.Phi_Q Manager (phi & Q props)

MAV -TIM - 33 KALPER Kalman Filter.Sequencer.Update Manager.-
Update_And_Send Messages via

Kalman_Filter.Alignment_Discretes.Put P

OCU -NAV - 2 HNAVCMD Nav_System.Mode_Controller
OCU -MAV - 82 PREP DWNLD Environment.Message Manager via System Controller
OCU -MAV - 84 START APPL Environment.Message Manager via System_Controller
OCU -MAV - 86 INTGDALN Nav_System.Mode_Controller
OCU -NAV - 87 INDQYDALN Nav_System.Mode_Controller
OCU -MAV - 92 NEWLEVARM Nav_System.Mode Controller
SCP -NMAV -~ 39 DOP_TIME Kalman Filter.Sequencer.Measurement Preprocessing
SCP -NAV - 40 DOPURD Kalman_Filter.Sequencer.Measurement_Preproceseing
TPM -MAV - 43 TPMUPD Kalman Filter.Sequencer.Measurement Preprocessing

(3) Documentation Tools

The 11th Missile team used Digital Standard Runoff (DSR) to format the top-level design
document (TLDD) and the test procedures document. The bulk of the TLDD was extracted from the code
headers and formatted for DSR by the Top-Level Design Comment Extractor (see Volume I, section
11.2.e(4)), a tool developed by MDAC-STL.

(4) Ada Compilers

The 11th Missile team had access to two different VAX/1750A cross-compilers; these will
be referred to as "Compiler A" and "Compiler B". This is partly to protect the compiler vendors’
proprietary information, and partly because the information presented here will (hopefully) soon be out-
of-date as improvements are made to the compilers.

Neither compiler handled generics well enough to use the CAMP parts without modifica-
tion (see Volume I, section VI). For this reason, and because DEC’s Ada Compilation System (ACS)
provides far better library management and code debugging tools, the 11th Missile team used the DEC
Ada compiler extensively. The DEC compiler was the only one used during the design phases, and was
used with a 1750A cross-compiler during unit testing (see Section I1.2.d). In the top-level design phase, it
was particularly useful when designing the task bodies, since the compiler automatically checked task
accept statements and subprogram calls for consistency with the task entry and subprogram definitions,
respectively. In both design phases, code had to compile before it was walked through. "Compiler B”
was used for the 1750A version of the nnit tests and for the integration tests.

21

Using three Ada compilers meant developing three versions of some of the code. The
compiler-specific code consisted primarily of prasmas and representation specifications. The 11th Mis-
sile team did this by writing all three versions in une file and commenting out the lines that did not apply
to the DEC compiler. Utility programs converted the files for use by another compiler by commenting
out the DEC-specific statements and activating the statements for the specified compiler (see Figure 11).

(5) Test Tools

Most unit tests were executed on the MDAC-HB 1750A Simulator, a FORTRAN program
that simulates the operation of a 1750A chip. Using this program, the 11th Missile team was able to run
those unil tests that did not use an external interface (i.e., the 1553B bus or the barometric altimeter port).

The simulator is quile slow, so some computation-intengive unit tests were executed on the
MIKROS 1750A Emulator or on a 1750A breadboard from the original 11th Missile project. The MIK-
ROS is a SEAFAC-certified 1750A implementation that is designed to be a co-processor with an IBM
PC/AT. Programs were downloaded from the IBM PC to the 1750A target and executed on the 1750A
hardware. The breadboard is built around an MDC281 implementation of the 1750A architecture and
contains 128K of memory. For unit tests, software was downloaded and controlled from a VAX 11/780
via a 1750A Monitor.

The integration tests were executed on the hardware-in-the-loop simulation (see Section
I1.2.e).

(6) Other Software Development Tools

Two other tools used /uring software development were Software Development
Notebooks (SDNs) and the DEC Code Managememnt System (CMS).

Generally, there was an SDN for each high-level package, but if it was large (e.g.,
Environment), there could be separate SDNs for its sub-packages. There were approximately forty 11th
Missile SDN’s. A module’s Software Development Notebook (SDN) contained the following:

® The SRS pages that applied to the module

¢ The Ada code

¢ The test plan pages that applied (o the module
¢ The test driver’s code

¢ The test results

CMS is a configuration management tool, which served as the central source code library
for the 11th Missile and kept track of code modifications. Only one person could reserve a file from CMS
at a time, thus ensuring that one person’s revisions could not be lost due to a file being overwritten by
another person. CMS is integrated with the Ada compilation system (ACS) to the extent there is an ACS
command to recompile all "out of date” modules (object code older than the corresponding source code in

22

*x%x DEC Version ****

for initat_messages use

record
word_count at O*RP.storage_units per_word range 0..15;
source at 1*RP.storage_units per_ word range O0.. 3;
destination at 1*RP.storage units_per_word range 4.. 7;
message_nunber at 1*RP.storage_units_per_word range §9..15;
effective time at 2*RP.storage_units_per_word range 0..3);
-="B" init quat 0 at 4*RP.storage_units_per word range 0..15;
-="A" init_quat 0 at 4*RP.storage units_per_word range 0..15;
-="A" init_quat_l at 3%RP,.storage_units_per_word range 0..15;
-=-"B" init_quat_1 at 5*RP.storage_units_per_word range 0..15;
end record;
for initat messages’size use BI.message_sixze; --VAX
~="B" for initat_messages’'size use BI.message_size+32;
EEA for initat _messages’size use BI.message_size;
sk "B" Version e ok
for initat_messages use
record
word count at O*RP.storage_units_per word range 0..15;
source at 1*RP.storage_units_per word range O0.. 3;
destination at 1*RP.storage_units_per word range 4.. 7;
message_number at 1*RP.storage_units per_ word range 8..15;
sffective_time at 2*RP.storage_units_per word range 0..31;
init_quat 0 at 4*RP.storage_units_per_word range 0..15; --"B"
-~ A" init_ quat_0 at 4*RP.storage_units per word range 0..15;
-="A" init_quat_1 at S5*RP.storage_units_per_word range O0..15;
init_quat 1 at S5*RP.storage_units_per_ word range 0..15; --"B"
end record;
--VAX for initat_messages’'size use BI.message_size;
for initat_messages'size ge_ -=-"B"
-="A" for initat messages’size use BI.message sicze;
Rhdk A" Version ****
for initat messages use
record
word count at O*RP.storage_units_per word rangs 0..15;
source at 1%RP.storage_units_per word range O.. 3;
destination at 1*RP.storage units_per_word range 4.. 7;
message_number at 1*RP.storage_units_per_word range §..15;
effective_time at 2*RP.storage_units_per_word range 0..31;
-="B" init_quat_0 at 4*RP.storage_units_per_word range 0..15;
init_quat 0 at 4*RP.storage_units_per word range 0..15; --"A"
init_quat_l at 3*RP.storage_units_per_word range 0..15; --"A"
--"B" init_quat_1 at S5*RP.storage_units_per word range 0..15;
end record;
--VAX for initat_messages'sire use BI.message_size;
--"B" for initat_messages’size use Bl.message_size+32;

for initat messages'size use BI.message_size; --"A"

‘igure 11. Code for Three Compilers Combined in One File

CMS). CMS was also used for configuration control of the Top-Level Design Document, the Test Plan,
the Test Procedure, and the Final Technical Report.

(7) Management Tools

A development status database, implemented using ORACLE (a commercially availabie
relational database), helped track the status and size of the 1tth Missile software. Each developer was
responsible for updating the database as appropriate. A program automatically generated a weekly status
report and sent it to all the developers and management.

The "smart" code counter (see Volume I, section 11.2.e(5)) was used to count the individual
modules for the software size fields of the database. An ORACLE command file calculated the total

software size.

24

SECTION III

EVALUATION OF THE CAMP PARTS
AND
THEIR USE IN THE 11TH MISSILE APPLICATION

Two versions of the 11th Missile Application were designed and tested. The first used the CAMP
parts, and is referred to as the "Parts Method". This was a complete implementation of the 11th Missile
requirements. The second implementation used the CAMP parts and parts composition system (PCS) and
is covered in Section IV it is referred to as the "PCS Method".

1. PRODUCTIVITY

During the 11th Missile Application development, effort data was maintained in order to determine
the effect of CAMP parts and PCS usage on productivity. In analyzing this data, one very important issue
was highlighted: Use of Adz for RTE applications requires mature, highly optimized compilerr Al-
though great strides have been made in the development of Ada compilers in general — the DEC VAX
compiler is a good example of this — Ada cross-compilers for RTE applications are not yet fully mature.
This situation is similar 1o the one that existed several years ago when high-quality Ada compilers for
non-RTE targets were hard to come by. This is characteristic of the cyclic development of technology in
general. As the demand and need for higher quality and greater efficiency in Ada cross-compilers in-
creases, compiler developers will find increasing incentive to expend the resources needed to improve
their products and incorporate the features that the 11th Missile team found to be so important for
developing effective RTE applications.

With this in mind, it is not surprising that the 11th Missile development team spent a significant
amount of time debugging the 1750A cross-compiler. The CAMP data indicates that with a mature

compiler, a productivity improvement of up to 15% was possible using the CAMP parts, This figure is
based on the adjusted testing hours shown in Table 7. Adjustments were based on two factors.

1. There was a disproportionately large test effort due to the immaturity of the Ada/1750A compiler.
Of the 153 errors discovered during testing, 96 were compiler errors and 57 were errors in the 11th
Missile code or the CAMP parts. Based on this, it seems reasonable to assume that half the test
time was spent debugging the compiler.

2. Again, because the Ada/1750A cross-compiler could not generate correct Ada code for portions of
the Navigation CSC, and because adequate work-arounds for the problems did not exist, testing of

the Navigation CSC was not completed (see Section VI). At the end of the project, it was es-
timated that another 240 hours would be required to fully test this CSC once the compiler

generated correct code.

25

Therefore, the adjusted test effort estimate is:

Test _Effort = 0.5 x 4779 hr + 240 hr = 2630 hr
As a cross-check, this is 45% of the adjusied total effort, which is roughly in line with the 40%-design/
20%-code/40%-test rule of thumb.

The raw data, without the adjustment for compiler immaturity (i.e., if all of the time spent debugging
the compiler is carried as a cost of using the parts), would actually indicate a productivity decrease of
18%. One of the most obvious areas of the compiler's immaturity was in its inability to handle the
complex, though perfectly standard, Ada generics used extensively in the CAMP parts,

TABLE 7. 11TH MISSILE EFFORT

Effort (hours)
Phase Actual Adjusted

Requirements 708 700
Architectural Design 883 [] 3]
Det. Design & Code 1306 1306
Testing 4779 2630
Other 371 373
Total 8047 5898

Table 8 shows the size of the 11th Missile software in both lines-of-code (LOC) and Ada statements.
The "generated” code comprises two sparse matrix operators that were generated using portions of
preliminary versions of the CAMP parts composition system Kalman Filter Constructor. Parts statement
counts are estimated from the overall ratio of statements to LOC for the parts (0.634 statements/LOC).
The "other reused” test software is FORTRAN and Harris assembler code used for the hardware-in-the-
loop tests. It was estimaied that there were 0.9 statements/LOC for this sofiware. Table 9 shows the

actual productivity.

TABLE 8. 11TH MISSILE SIZE - PARTS METHOD

Lines State~
of Code ments

Operational Code

New 15708 0697
Generated 11086 471
Mod. Parte 39" 4%8
Parts 3911 2480"
Total 21624 12106
Test Software
New 19752 12605
Parts 1114 706"
Other Reused 14544 13090*
Total 35410 26401
* Estimated

26

TABLE 9. 11TH MISSILE PRODUCTIVITY - PARTS METHOD

Neow All New All
Operational Operational Developed Developed
LOC/Work-Month 304.5 419.2 687.4 1105.7
gtmt /Work-Month 168.5 234.7 413.0 746.3
Work-Eours/LOC 0.51 0.37 0.23 0.14
Work-Hours/Stmt 0.93 0.66 0.38 0.21

CAMRP parts constituted 18.1% of the Parts Method implementation of the 11th Missile code and
3.1% of the test codc (see Table 8). Using the adjusted effort as a basis, the 11th Missile developers
saved 896 work-hours, 15% of the development effort, by using the CAMP parts. Table 10 compares the
adjusted effort with the estimated effort required had the parts not been used.

TABLE 10. EFFECT OF PARTS ON 11TH MISSILE EFFORT

Effort (hours)
Adjusted Estimated

With Without

Phase Parte Parts
Requirements 708 708
Architectural Design 903 [[K}
Det. Design & Code 1306 1604
Testing 2630 3228
Other 371 371
Total 5698 6794

Effort Saved: 896 hours

Productivity Improvement: 13%

The increased effort that would have been required for the detailed design and coding phase had the
parts not been used was estimated as follows:
DD_Effort - DD_Gen_Effort
New_Code + Mod_Code
1306 hr — 40 hr
15708 LOC + 897 LOC
DD_Rate = 00762 /LOC
DD_Saved = DD_Rate x Parts_Codce
DD_Saved = 0.0762 hr/LOC x 3911 LOC
DD_Saved = 298 hr

where DD_Rate = Detail design and code productivity, irours per line-of-code
DD_Effort = Total detail design and code effort, hours
DD_Gen_Effort = Estimated effort 10 generate code, hours
New_Code = New operational code, lines-of-code
Mod_Code = Modified parts code, lines-of-code

DD_Rate =

DD_Rate =

27

Parts_Code = Parts code, lines-of-code
DD_Saved = Detail design and code effort saved, hours

This estimalte is conservative because il assumes that it took as long to code the modified parts as it
did to design and code the new software.

A similar calculation for the increased effort that would have been required to test without the parts

yields:
Test_Effort
Test_Rate = New_Code + Mod_Code + Gen_Code
Test_Rate = 2630 hr

15708 LOC + 897 LOC + 1108 LOC
Test_Rate = 0.148 hr/LOC

Test_Saved_Op = Test_Rate x Parts_Code
Test_Saved_Op = 0.148 hr/LOC x 3911 LOC
Test_Saved_Op =579 hr

where Tesi_Rate = Test productivity, hours per line-of-code
Test_Effort = Total test effort, hours
Gen_Code = Generated code, lines-of-code
Test_Saved_Op = Test effort saved due (o parts in operational code, hours

However, part of the test code was itself parts. Adjust for this as follows:

Test_Code
Test_Saved = New_Test_Code + Reused_Test_Code UL L)
Test_Saved = lge X 579 hr

19752 LOC + 14544 LOC
Test_Saved = 598 hr

where Test_Saved = Test effort saved, hours
New_Test_Code = New test code, lines-of-code
Reused_Test_Code = Reused test code, lines-of-code
Test_Code = Total test code, lines-of-code
New, modified, and generated code are included in the testing "rate base" because all of this code
was unil tested; the parts code was not. There is a small error in this calculation because part of the test
effort was devoted to debugging parts. The magnitude of the error isn’t known, but is certainly less than

100 hours.

The actual development effort was 8047 hours. It may be argued that the time spent debugging the
compiler was a cost of using the parts:

¢ If the CAMP parts had not been used, complex generics would not have been used;
o If complex generics had not been used, fewer compiler problems would have been encountered,

¢ If fewer compiler problems had been encountered, total effort would have declined.
It is difficult to assess just how much additional test time was due to compiler problems, and how much
of that additional time would not have been required if the parts were not used. If all of the estimated

28

compiler test time is charged as a cost of using the parts, then there as an 18% decrease in productivity,

computed as follows: _
Estimated _Effort_Without_Parts 1.0
Actual_Effort_With_Parts

Productivity_Improvement =

6794
Productivity_Improv =——n-1.0
roductivity_Improvement 3047 1

Productivity_Improvement = — 0.18
It